Michel-Penot subdifferential and Lagrange multiplier rule

نویسندگان

  • Triloki Nath
  • S. R. Singh
چکیده

-In this paper, we investigate some properties of Michel Penot subdifferentials of locally Lipschitz functions and establish Lagrange multiplier rule in terms of Michel-Penot subdifferentials for nonsmooth mathematical programming problem. Key-Words: Nonsmooth optimization; approximate subdifferentials; generalized gradient; Michel Penot subdifferential; Banach space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz‎. ‎Necessary optimality conditions and regularity conditions are given‎. ‎Our approach are based on the Michel-Penot subdifferential.

متن کامل

The Directed Subdifferential of DC Functions

The space of directed sets is a Banach space in which convex compact subsets of Rn are embedded. Each directed set is visualized as a (nonconvex) subset of Rn, which is comprised of a convex, a concave and a mixed-type part. Following an idea of A. Rubinov, the directed subdifferential of a difference of convex (DC) functions is defined as the directed difference of the corresponding embedded c...

متن کامل

The Linear Nonconvex Generalized Gradient and Lagrange Multipliers

A Lagrange multiplierrules that uses small generalized gradients is introduced. It includes both inequality and set constraints. The generalized gradient is the linear generalized gradient. It is smaller than the generalized gradients of Clarke and Mordukhovich but retains much of their nice calculus. Its convex hull is the generalized gradient of Michel and Penot if a function is Lipschitz. Th...

متن کامل

Nondifferentiable Multiplier Rules for Optimization and Bilevel Optimization Problems

In this paper we study optimization problems with equality and inequality constraints on a Banach space where the objective function and the binding constraints are either differentiable at the optimal solution or Lipschitz near the optimal solution. Necessary and sufficient optimality conditions and constraint qualifications in terms of the Michel–Penot subdifferential are given, and the resul...

متن کامل

On nonsmooth V-invexity and vector variational-like inequalities in terms of the Michel-Penot subdifferentials

In this paper, we establish some results which exhibit an application for Michel–Penot subdifferential in nonsmooth vector optimization problems and vector variational-like inequalities. We formulate vector variational-like inequalities of Stampacchia and Minty type in terms of the Michel–Penot subdifferentials and use these variational-like inequalities as a tool to solve the vector optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011